

SPECIALIST MATHEMATICS Teach Yourself Series

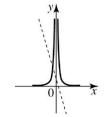
Topic 1: Coordinate Geometry

A: Level 14, 474 Flinders Street Melbourne VIC 3000 T: 1300 134 518 W: tssm.com.au E: info@tssm.com.au

Contents

Coordinate Geometry	 3
Coordinate Geometry Graphs of power functions	 3
As it appears in Unit 2 and 3 Review Questions	 3 5
Graphs of reciprocal functions	 6
As it appears in Unit 2 and 3	 6
Review Questions	 6
As it appears in Unit 1 and 2	6
Graphs of ellipses and hyperbolas	 6
As it appears in Unit 1 and 2	6
Review Questions	6
Solutions to Review Questions	6

Coordinate Geometry


In this topic we shall study the graphs of different types of functions-power functions, reciprocal functions, circles, ellipses and hyperbolas. Knowing the graphs of various functions can help us to find different characteristics of the functions- domain, range, shape, max/min values, to name a few.

Graphs of power functions

As it appears in Unit 2 and 3

- The graph of $f(x) = ax + \frac{b}{x}$ is a combination of a linear function with a hyperbola
 - The asymptotes are given by y = ax and x = 0
 - The shape is determined by the signs of a and b
- The graph of $f(x) = ax + \frac{b}{x^2}$ is a combination of a linear function with a truncus
 - The asymptotes are given by y = ax and x = 0
 - The shape is determined by the signs of *a* and *b*
- The graph of $f(x) = ax^2 + \frac{b}{x}$ is a combination of a quadratic function with a hyperbola
 - The asymptotes are given by $y = ax^2$ and x = 0
 - The shape is determined by the signs of *a* and *b*
- The graph of $f(x) = ax^2 + \frac{b}{x^2}$ is a combination of a quadratic function with a truncus
 - The asymptotes are given by $y = ax^2$ and x = 0The shape is determined by the signs of *a* and *b*

Eg. Write down the equation of the asymptotes for $y = \frac{8}{x} + 2x + 1$. Asymptotes are y = 0, x = 0 (from $y_1 = \frac{8}{x}$) and y = 2x + 1. Eg. The function $y = \frac{4}{x^2} - 3x + 2$ is broken into the functions $y_1 = \frac{4}{x^2}$ and $y_2 = -3x + 2$, which appear on the graph below.

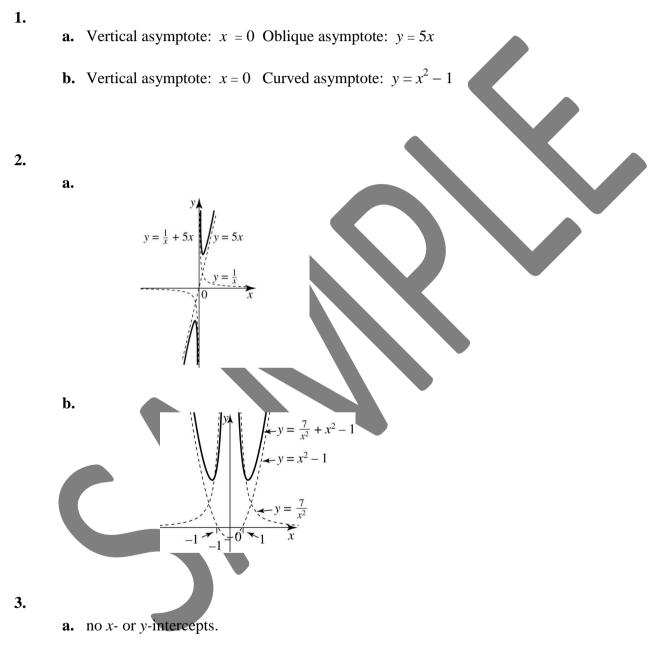
Describe the behaviour of the function $y = \frac{4}{x^2} - 3x + 2$ near the asymptotes. Hence, without any further calculations, sketch the graph of the function.

From y_1 , asymptotes are x = y = 0.

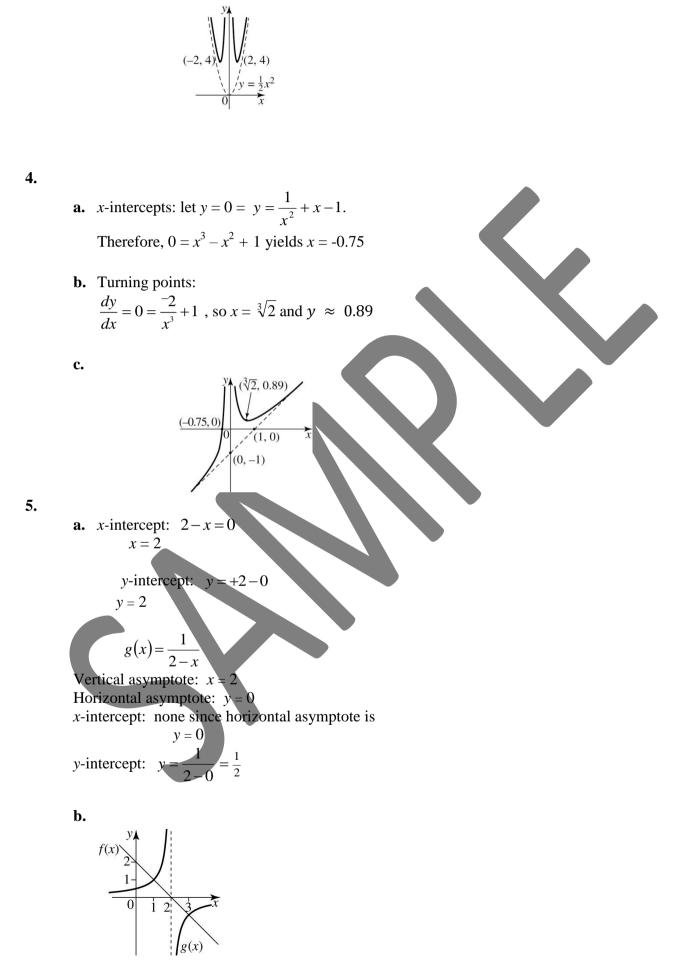
From y_2 , asymptote is also y = -3x + 2. As $x \to \pm \infty$, $y \to (-3x + 2)+$, and as $x \to 0$, $y \to \infty$.

x

0


Review Questions

1. Find the asymptotes for each of the following:


a.
$$y = \frac{1}{x} + 5x$$

h. $y = \frac{7}{x^2} + x^2 - 1$
2. Sketch the graph of each function in question 1
a.

Solutions to Review Questions

b. Turning points: $\frac{dy}{dx} = 0 = \frac{-16}{x^3} + x$ Therefore, turning points are at x = 2, x = -2, that is, (2, 4) and (-2, 4).

